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Hints for universality in coupled map lattices
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A wide range of coupled map lattices is found to have identical pattern sequences providing numerical
evidence for their universality in the class of systems studied. It is furthermore found that the wave-type
solutions of the diffusively coupled logistic lattice scale linearly with the coupling range indicating the exis-
tence of a continuum limit. The findings are used to introduce a very simple type of spatially extended map that
can serve as a representative for the pattern sequence of this class of coupled maps.
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I. INTRODUCTION

Coupled map lattices have widely been studied as p
digms for high dimensional chaos due to their rich pheno
enology and computational efficiency. Especially the nea
neighbor diffusively and the globally coupled logistic lattic
have been investigated numerically in great detail~for a gen-
eral introduction, see e.g.,@1,2# or @3–5# for nearest neighbo
coupled logistic maps and@6–8# for globally coupled logis-
tic maps!.

Intermediate regimes or the dependency of the phen
enologies on the forms of the couplings and local maps h
thus far received little attention. Recently, however, a co
bination of a local map with a global map has yielded so
interesting results@9#, while the origin of power-law correla
tions for nonlocal couplings was theoretically explained
@10# for medium range nonlocal couplings. In this paper,
effects of extending the coupling range and the sensitivity
the phenomenology on the local map and the coupling fo
are investigated.

Two main discoveries and a very simple coupled map
reported. First, it is found that when extending the coupl
range in the diffusively coupled logistic lattice, the attrac
~a wave-type solution! scales linearly with the coupling
range. This provides numerical evidence of a proper c
tinuum limit. Second, it is found that the phenomenology
the diffusively coupled logistic lattice is applicable to a wid
variety of coupled maps. The latter finding is used to int
duce a tent-map-like coupled map that is extremely sim
and that does not have a local chaotic map. This coupled
can serve as a representative for the investigated clas
coupled maps as with regards to the pattern sequence.

II. LONG RANGE COUPLINGS AND
THE CONTINUUM LIMIT

Adding the coupling range as a variable, the standard
fusively coupled logistic lattice can be extended as

xn11
i 5~12«! f ~xn

i !1
«

2r (
k51
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@ f ~xn
i 2k!1 f ~xn

i 1k!#, ~1!
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where f (x) is the single logistic map

f ~xn!5xn11512axn
2 ~2!

with a the nonlinearity,« the coupling constant, andr the
coupling range.

For r 51, when increasing the nonlinearity in Eq.~1!
from 0 to the maximum 2, the system encounters sev
so-called universality classes such as e.g., patterns
kinks, frozen random patterns, pattern selection, and tra
ing waves. Not surprisingly, the phenomenology for globa
coupled maps is rather different with, for example, the f
mation of hierarchical clusters, marginal stability with info
mation avalanches@11# or high dimensional tori@8,12,13#.
For larger values of the coupling constant« and medium
high values of the nonlinearitya, the globally coupled map
has a single uniform solution while the nearest neigh
coupled map has a temporally period four wavelike soluti

It is found that forr .1 in Eq.~1!, the shape and tempora
periodicity of the attractor remain unchanged while t
wavelength increases. An example of a long wavelength
lution in shown in Fig. 1 where the selected pattern forr
520 is depicted.

/

FIG. 1. Attractor with a wavelength of 114 sites and a coupli
range of 20. Only the first 200 sites of a lattice of 1145 sites
shown. The system size was chosen to be ten times the wavele
as determined in Fig. 3 in order to minimize frustration. The no
linearity a51.7 and the coupling constant«50.7.
©2002 The American Physical Society02-1
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In order to examine how well the solution scales, attr
tors with increasing coupling ranges were compared by s
ing and shifting thex axis such that the start and end poin
of a single pulse of the same phase match. As can be se
Fig. 2, the overlap of successively longer waves becom
better for increasingr. Indeed, when plotting the waveleng
versus the coupling range as in Fig. 3, it is found that
scaling is linear to a very high accuracy. The data were
tained by calculating the average wavelength of 100 r
with a transient time of 50 000 steps for each value ofr. In
order to minimize the effects of frustration, the system sizN
was increased for increasing coupling ranges by setting
N5600r assuring that for each coupling ranger, there is a
sufficient number of pulses for determining the waveleng

The data provide clear numerical evidence for a c
tinuum limit. This may be of great physical interest, esp

FIG. 2. Scaled overlay of five attractors with coupling rang
from r 51 to r 516 as indicated in the figure. The nonlinearitya
51.7 and the coupling constant«50.7.

FIG. 3. Wavelength versus the coupling range for the coup
map in Eq.~1!. The nonlinearitya51.7 and the coupling constant«
ranges from 0.5 to 0.9 as indicated. The small circles repre
actual data points while the lines are the result of linear regres
with the indicated correlation coefficient.
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cially if a corresponding partial differential equation can
found. Phenomenologically, Eq.~1! turns out to basically
behave equivalently for allr when taking the effects of frus
tration into account. This does not mean, however, that th
cannot be any differences. In the case of the frozen rand
pattern~and the pattern with kinks!, for example, the initial
conditions must roughly be chosen in segments of sizer in
order to obtain the frozen random attractor. This is as
pected since the segments of the frozen random pattern
determined by the domain size of neighboring lattice poi
in the same band of the single logistic map@14#.

The difference between random initial conditions and s
mented random initial conditions is illustrated in Fig.
where typical patterns for both cases are depicted~naturally
since the values are random, the two cases are not mutu
exclusive!. As can be seen, for completely random initi
conditions, the system falls on what appears to be a su
transient chaotic band 2 attractor as found in the nea
neighbor diffusively coupled logistic lattice@14–16#, while
for the segmented initial conditions the expected~scaled!
frozen random pattern is obtained.

In order to verify whether the band 2 attractor is indeed
supertransient, first the transient times for a range of sm
system sizes were determined by averaging 10 000 runs~see
the inset in the upper left corner of Fig. 5! to find the one-
pulse system size with the least amount of frustration. N
the transient times for four to seven times this system s
were determined by averaging over 100 runs. The motiva
for this procedure is that otherwise, in order to exclude ma
artifacts due to frustration, system sizes would need to
chosen that would lead to impractically long transient tim
As can be seen in Fig. 5, the transient time indeed increa
exponentially indicating the supertransient nature of
attractor.

In the limit where the coupling range approaches the s
tem size~i.e., r→N), Eq. ~1! becomes more and more sim
lar to the globally coupled map. It is well-known that fo
larger values of«, the globally coupled map is attracted to

s

d

nt
n

FIG. 4. Different attractors depending on the range of the ini
conditions. In ~a! the initial conditions are chosen randomly fo
each site between21 and 1. In~b! r neighboring sites have an
identical random value between21 and 1. The parameters area
51.52, «50.7, andr 510 with the system sizeN5300.
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uniform state. In light of the current findings, this can
understood by considering that a wave-type solution at le
needs one pulse. When the system size becomes too sm
squeeze in a pulse with frustration, only a part of the pu
remains. Due to the equalizing effects of the coupling, t
part will then be flattened to the homogeneous attractor if
overall curvature of the segment is small enough. Indee
is found that for system size independent wavelengthsl, as
determined by extrapolating Fig. 3, up tol' 3

2 N periodic
solutions exist, possibly with remnant or superimpos
chaos. For3

2 N' l'2N, spatially smooth but nonhomoge
neous sine-pulse-segment-like, temporally chaotic, solut
exist, while for l'2N, the spatially homogeneous, temp
rally chaotic, attractor equivalent to the single logistic m
as found in the globally coupled map is selected.

For smaller values of« and not too short coupling range

FIG. 5. Transient time versus system size for the two band
tractors shown in Fig. 4. The parameters area51.52, «50.7, and
r 510 and the system size ranges fromN5183 to N5427. The
inset in the left upper corner shows the average transient time
sus the system size for small system sizes big enough for just
pulse. The shortest transient time~and hence the best fit! is for
N561.

FIG. 6. Superposition of globally coupled maplike solutions a
long coupling range wavelike solutions. The parameters area
51.7, «50.22, andr 550.
02620
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Fig. 6.

III. CHAOTIC PATTERN SELECTION

Besides the mixed or superposed states, two types of
otic pattern selection~CPS! not found in a similar way in
either the very short range or very long range regimes
shown in Figs. 7 and 8. Both types display a long range or
combined with local chaos.

In the first type, depicted in Fig. 7, overall at each tim
step, the attractor is very similar to the pattern selection
tractor. While the nodes are fixed in space, however,
segments in between appear to chaotically approximate
of the phases of the attractor. Visually, CPS is somew
reminiscent of frustration induced chaotic motion on a
lected pattern. If frustration would be the source of the o
served chaos, a clear dependence on the system size s
be observed. This was not found to be the case, howe
when simulating the system repeatedly for several hund
million time steps with lattice sizes aroundN51000 and a
coupling range ofr 58 yielding a wavelength of about 33

t-

r-
ne

FIG. 7. Chaotic pattern selection of type 1. The parameters
a51.8, «50.4, andr 58.

FIG. 8. Chaotic pattern selection of type 2. The parameters
a51.7, «50.065, andr 550.
2-3
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This ratio of wavelength to system size should be sufficien
small to exclude frustration as the source for this type
CPS.

The second type of chaotic pattern selection, depicte
Fig. 8, occurs in a narrow band for values of« slightly larger
than those that yield the spatiotemporal chaos found
small «. The transition from spatiotemporal chaos to chao
pattern selection appears to be smooth~at least as long asr is
not too big! as can be seen in Fig. 9 where the ratio of latt
sites that are found in the same band at one time step and
iterates later is plotted versus« ~the patterns are temporall
period 2!. While this ratio includes sites that flip back an
forth, after the transients have mostly died out, it provide
good indication of the temporal stability of the pattern.

When increasing« from the spatiotemporal region, th
temporal stability of the pattern slowly increases, i.e.,
time sites remain in the same band increases gradually
first sites remain in the same band only for very short tim
Then they do so for longer times disturbed by frequent
fects. As in the type 2 intermittency found in the near
neighbor diffusively coupled logistic lattice, these defe
can spontaneously arise. Lastly, when the ratio is just rea
ing one, regularly spaced chaotic pattern selection can
found. This is illustrated in the insets of Fig. 9. In~a! and~b!,
the parameters are identical but the time scales are diffe
In ~a!, where the spatiotemporal pattern can clearly be d
cerned, every second iterate is plotted revealing the sh
time dynamics, while in~b!, resembling spatiotempora
chaos, every 100th iterate is plotted. Inset~c! shows chaotic
pattern selection~some defects remain for these paramete!
for a value of« at which the ratio of sites found in the sam
band is nearly 1.

FIG. 9. The ratio of sites that, when starting in either the low
or upper band, is found to be in the same band 100 iterates l
The average over 106 time steps is taken after a transient of 15

time steps. The system sizes areN5100 for r 51, N5200 for r
52,5,10, andN5300 for r 550. The nonlinearity isa51.7. The
insets show some representative space-amplitude plots. In~a! every
second iterate is plotted and in~b! every 100th iterate is plotted fo
r 55 and«50.62. In~c! every 100th iterate is plotted forr 55 and
«50.73.
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With the exception ofr 51, the curves become steep
and move to the left for increasing coupling strengths. F
r 51, when increasing the coupling strength beyond
range where chaotic pattern selection is found, an inve
bifurcation sequence to the spatially and temporally perio
zigzag pattern occurs. This was not found forr .1, where
the lattice seems to freeze nonperiodically, possibly form
patterns that somewhat fall between globally coupled a
locally coupled maps, before forming selected patterns
larger«.

IV. HINTS FOR UNIVERSALITY

Since their introduction, a key motivation for the study
coupled map lattices has been the prospect of universalit
order to investigate how universal the phenomenology of
coupled logistic lattice is, the following models were sim
lated:

xn11
i 512

a

2
~xn

i 211xn
i 11!xn

i with max ~xn11
i !51,

~3!

xn11
i 512

a

2
u~xn

i 211xn
i 11!~xn

i !2u, ~4!

xn11
i 512

a

2
u~xn

i 211xn
i 11!~xn

i !3u, ~5!

xn11
i 512

a

3
u~xn

i 211xn
i 11!xn

i 1xn
i 21xn

i 11u, ~6!

xn11
i 5~12e!xn

i 1e@12u~xn
i 211xn

i 11!xn
i u#. ~7!

Equations~3!–~7!, all turned out to have similar dynamics a
can be seen in Fig. 10.

For comparison, Fig. 4~f! depicts pattern selection as
occurs in Eq.~1! with r 51.

Similar dynamics were not only observed for differe
types of couplings but also for local maps with higher po
ers in Eq.~1! (r 51) as is shown in Fig. 11. In order to b
able to compare the phenomenology, the nonlinearitya was
chosen such that the local map is just before the perio
window except for~a! where it was chosen to be at abo
one-third the distance between the band merging point
maximum nonlinearity.

Figures 10 and 11 clearly show that the pattern dynam
as such is neither dependent on the exact from of the
ployed coupling nor dependent on the power of the lo
map. Indeed, it is not even dependent on having a local m
at all.

A rough phenomenological phase diagram, applicable
all the lattices studied in this paper, is given in Fig. 12. In t
case of the models without an explicit coupling consta
@Eqs.~3!–~7!#, the basic pattern sequence as depicted can
observed when increasing the nonlinearity@in Eq. ~7! « plays
the role of the nonlinearity#. If the model contains a coupling
constant, its increase will lead to longer wavelengths. F
thermore, in all the models investigated, increasing the c

r
er.
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FIG. 10. Pattern selection for Eqs.~3!–~7!. ~a! Equation~3!, a
51.7. ~b! Equation ~4!, a51.81. ~c! Equation ~5!, a51.84. ~d!
Equation~6!, a51.65. ~e! Equation~7!, «50.93. ~f! Equation~1!,
a51.7, «50.5.

FIG. 11. Selected patterns for various local maps as indicate
the right hand side of the graphs.~a! f (x)512auxu, a
51.55, «50.5. ~b! f (x)512ax2, a51.74, «50.6. ~c!
f (x)512ax2uxu, a51.79, «50.6. ~d! f (x)512ax4, a
51.80, «50.55. ~e! f (x)512ax4uxu, a51.83, «50.5.
02620
pling ranger resulted in an increase of the wavelength and
an increase of the similarity between the wave shapes.
numerical results, therefore, strongly hint at the existence
an underlying universal mechanism.

V. THE TENT-COUPLING MAP AS A SIMPLE PARADIGM

In order to provide a simple paradigm for the pattern
quence observed in Eq.~1! and Eqs.~3!–~7!, the following
tent-coupling map was studied

xn11
i 512

a

2
u~xn

i 211xn
i 11!xn

i u, ~8!

where i is the spatial index,n the discrete time, anda a
parameter. Just as in the case of the diffusively coupled m
Eq. ~8! can straightforwardly be extended to longer coupli
ranges

on

FIG. 12. Phenomenological phase diagram for the lattices s
ied in this paper. The insets show representative patterns from
nearest neighbor diffusively coupled logistic lattice.~a! a
50.50, «50.5.~b! a51.30, «50.5.~c! a51.45, «50.5.~d!
a51.70, «50.5. ~e! a51.80, «50.5. ~f! a51.70, «50.8.
~g! a51.70, «50.085.~h! a51.70, «50.04.

FIG. 13. The tent-coupling map of Eq.~8! for several given
values ofxn

i 211xn
i 11 as indicated in the figure fora52.0.
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xn11
i 512

a

2r U(k51

r

~xn
i 2k1xn

i 1k!xn
i U. ~9!

As immediately can be seen, in the homogeneous c
Eq. ~8! reduces to the single logistic map, while for a giv
state of the neighbors it forms the tent map given in Fig.
where the slope is determined by the product of the non
earity a and the sum of the neighbors.

As with the other models used in this paper, it is fou
that the pattern sequence observed for Eq.~8! goes from a
uniform state to~supertransient! spatiotemporal chaos vi
patterns with kinks, frozen random patterns, and pattern
lection. Even traveling waves have been observed foa
51.75 andr 52.
s
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VI. CONCLUSION

In conclusion, it was found that a variety of coupled ma
displays identical pattern sequences when increasing
nonlinearity. It was furthermore found that the patterns sc
when increasing the coupling range. In the case of the di
sively coupled logistic lattice, the scaling is linear providin
clear numerical evidence for a continuum limit. The tw
findings combined provide thus far the strongest evide
yet of the existence of universality classes in coupled m
lattices. The very simple introduced tent-coupling map a
pears to be suitable as a paradigm for the pattern sequen
this class of coupled maps.
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