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Hints for universality in coupled map lattices
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A wide range of coupled map lattices is found to have identical pattern sequences providing numerical
evidence for their universality in the class of systems studied. It is furthermore found that the wave-type
solutions of the diffusively coupled logistic lattice scale linearly with the coupling range indicating the exis-
tence of a continuum limit. The findings are used to introduce a very simple type of spatially extended map that
can serve as a representative for the pattern sequence of this class of coupled maps.
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I. INTRODUCTION wheref(x) is the single logistic map
Coupled map lattices have widely been studied as para- f(Xp)=Xns1=1— ax? 2

digms for high dimensional chaos due to their rich phenom-

enology and computational efficiency. Especially the nearesjitn o the nonlinearity,e the coupling constant, andthe
neighbor diffusively and the globally coupled logistic lattices ¢4 jing range.

have been investigated numerically in great defail a gen- For r=1, when increasing the nonlinearity in E€L)

eral introduction, see e.d3,2] or [3-5] for nearest neighbor ¢, 0 to the maximum 2. the system encounters several
coupled logistic maps anié—8] for globally coupled logis- s cajled universality classes such as e.g., patterns with
tic maps. kinks, frozen random patterns, pattern selection, and travel-

Inter.mediate regimes or the dependency of the phenorr]hg waves. Not surprisingly, the phenomenology for globally
enologies on the forms of the couplings and local maps havgg, ieq maps is rather different with, for example, the for-

thus far received little attention. Recently, however, a comyy,qiinn of hierarchical clusters, marginal stability with infor-
bination of a local map with a global map has yielded some,,5tion avalancheB11] or high dimensional tor[8,12,13.
interesting resultg9], while the origin of power-law correla- £, larger values of the coupling constantand ;ne(,jium
tions for nonlocal couplings was theoretically explained inhigh values of the nonlinearity, the globally coupled map
[10] for medium range nonlocal couplings. In this paper, th as a single uniform solution, while the nearest neighbor
effects of extending the coupling range and the sensitivity o oupled map has a temporally period four wavelike solution.
the pheno_menology on the local map and the coupling form It is found that forr >1 in Eq.(1), the shape and temporal
are mvestlgate_d. . . eriodicity of the attractor remain unchanged while the
Two main discoveries and a very simple coupled map ar avelength increases. An example of a long wavelength so-

reported. First, it is found that when extending the couplingIution in shown in Fig. 1 where the selected pattern ffor
range in the diffusively coupled logistic lattice, the attractor:20 is depicted

(a wave-type solution scales linearly with the coupling
range. This provides numerical evidence of a proper con-
tinuum limit. Second, it is found that the phenomenology of
the diffusively coupled logistic lattice is applicable to a wide

variety of coupled maps. The latter finding is used to intro-
duce a tent-map-like coupled map that is extremely simple
and that does not have a local chaotic map. This coupled ma
can serve as a representative for the investigated class ¢
coupled maps as with regards to the pattern sequence. TS Ofr e

0.5

Il. LONG RANGE COUPLINGS AND
THE CONTINUUM LIMIT 05

Adding the coupling range as a variable, the standard dif-
fusively coupled logistic lattice can be extended as

|
150 200

;
. . E . .
Xn1= (L= e)f0x) +5 2 [FOG )+, (1)
k=1 FIG. 1. Attractor with a wavelength of 114 sites and a coupling
range of 20. Only the first 200 sites of a lattice of 1145 sites are
shown. The system size was chosen to be ten times the wavelength
*Email address: willeboordse@yahoo.com URL: http:// as determined in Fig. 3 in order to minimize frustration. The non-
staff.science.nus.edu.Sgfederik linearity «=1.7 and the coupling constaat=0.7.

1063-651X/2002/6&)/0262026)/$20.00 65 026202-1 ©2002 The American Physical Society



FREDERICK H. WILLEBOORDSE PHYSICAL REVIEW 65 026202

Lo b b b b b b b Lo b b bua baa L b

i
(=4
1]

S L L DL L B L L L I L R L I

0 50 100 150 200 250 300

O
B g

0.0 )

02 AU ALNDRD)

03 % X N

04 I |

05 ] 10 ; | ; | i | i I i \ i

0K ] 0 50 100 150 200 250 300

071 i

Scaled Wavelength / . . o
FIG. 4. Different attractors depending on the range of the initial

FIG. 2. Scaled overlay of five attractors with coupling rangesconditions. In(a) the initial conditions are chosen randomly for
from r=1 tor=16 as indicated in the figure. The nonlinearity ~ €ach site between-1 and 1. In(b) r neighboring sites have an
=1.7 and the coupling constast=0.7. identical random value betweenl and 1. The parameters atie

=1.52,e=0.7, andr =10 with the system siz8l=300.

In order to examine how well the solution scales, attrac-
tors with increasing coupling ranges were compared by scakially if a corresponding partial differential equation can be
ing and shifting thex axis such that the start and end pointsfound. Phenomenologically, Eq1) turns out to basically
of a single pulse of the same phase match. As can be seenliehave equivalently for atl when taking the effects of frus-
Fig. 2, the overlap of successively longer waves becometsation into account. This does not mean, however, that there
better for increasing. Indeed, when plotting the wavelength cannot be any differences. In the case of the frozen random
versus the coupling range as in Fig. 3, it is found that thepattern(and the pattern with kinksfor example, the initial
scaling is linear to a very high accuracy. The data were obconditions must roughly be chosen in segments of siire
with a transient time of 50 000 steps for each value.dh ~ Pected since the segments of the frozen random pattern are
order to minimize the effects of frustration, the system size detérmined by the domain size of neighboring lattice points

was increased for increasing coupling ranges by setting it t§! the same band of the single logistic midgt].
N=600 assuring that for each coupling rangethere is a The difference between random initial conditions and seg-

sufficient number of pulses for determining the wavelength.mente(j rgndom initial conditions is |Ilustrat¢d in Fig. 4
. ) : where typical patterns for both cases are depictedurally
The data provide clear numerical evidence for a con-

i imit. Thi be of t phvsical int ¢ since the values are random, the two cases are not mutually
inuum-fimit. - This may be ot great physical interest, espe'exclusive). As can be seen, for completely random initial

conditions, the system falls on what appears to be a super-
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£=0.5; I=3.46 + 4.71r (0.005)
£=0.6; 1=3.65 + 5.16r (0.003)
€£=0.7; 1=4.02 + 5.53r (0.003)
£=0.8; 1=4.20 + 5.89r (0.002)
£=0.9; 1=4.43 + 6.22r (0.004)

B transient chaotic band 2 attractor as found in the nearest
neighbor diffusively coupled logistic latticel4—16, while
for the segmented initial conditions the expeciasdaled
frozen random pattern is obtained.

In order to verify whether the band 2 attractor is indeed a
] supertransient, first the transient times for a range of small
system sizes were determined by averaging 10 000 (s8®
the inset in the upper left corner of Fig) & find the one-
pulse system size with the least amount of frustration. Next
the transient times for four to seven times this system size
3 were determined by averaging over 100 runs. The motivation
for this procedure is that otherwise, in order to exclude major
artifacts due to frustration, system sizes would need to be

Coupling Range r

chosen that would lead to impractically long transient times.
As can be seen in Fig. 5, the transient time indeed increases
exponentially indicating the supertransient nature of the

20

FIG. 3. Wavelength versus the coupling range for the coupledittractor.
map in Eq.(1). The nonlinearityx= 1.7 and the coupling constast In the limit where the coupling range approaches the sys-
ranges from 0.5 to 0.9 as indicated. The small circles represertem size(i.e.,r—N), Eq. (1) becomes more and more simi-
actual data points while the lines are the result of linear regressiofar to the globally coupled map. It is well-known that for
with the indicated correlation coefficient. larger values ot, the globally coupled map is attracted to a
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FIG. 5. Transient time versus system size for the two band at- f|G. 7. Chaotic pattern selection of type 1. The parameters are
tractors shown in Fig. 4. The parameters are1.52,=0.7, and  ,—-18 s=04. andr=8.

r=10 and the system size ranges froM=183 to N=427. The
inset in the left upper corner shows the average transient time vey- mixed or superposed states can be found as can be seen in
sus the system size for small system sizes big enough for just Or\éig 6
pulse. The shortest transient tintend hence the best Jfiis for T
N=61.
Ill. CHAOTIC PATTERN SELECTION

uniform state. In ||ght Of the current findings, th|S can be Besides the mixed or Superposed states, two types of cha-
understood by considering that a wave-type solution at leagjtic pattern selectioiCPS not found in a similar way in

needs one pulse. When the System size becomes too Sma”éﬁher the Very short range or Very |ong range regimes are

squeeze in a pulse with frustration, only a part of the pulseshown in Figs. 7 and 8. Both types display a long range order
remains. Due to the equalizing effects of the coupling, thissombined with local chaos.

part will then be flattened to the homogeneous attractor if the | the first type, depicted in Fig. 7, overall at each time

overall curvature of the segment is small enough. Indeed, iétep, the attractor is very similar to the pattern selection at-
is found that for system size independent wavelengtias  tractor. While the nodes are fixed in space, however, the
determined by extrapolating Fig. 3, up te=3N periodic  segments in between appear to chaotically approximate one
solutions exist, possibly with remnant or superimposecyf the phases of the attractor. Visually, CPS is somewhat
chaos. For;N~|~2N, spatially smooth but nonhomoge- reminiscent of frustration induced chaotic motion on a se-
neous sine-pulse-segment-like, temporally chaotic, solutionfected pattern. If frustration would be the source of the ob-
exist, while forl~2N, the spatially homogeneous, tempo- served chaos, a clear dependence on the system size should
rally chaotic, attractor equivalent to the single logistic mappe observed. This was not found to be the case, however,
as found in the globally coupled map is selected. when simulating the system repeatedly for several hundred
For smaller values of and not too short coupling ranges million time steps with lattice sizes aroumd=1000 and a
coupling range of =8 yielding a wavelength of about 33.
1
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FIG. 6. Superposition of globally coupled maplike solutions and
long coupling range wavelike solutions. The parameters are FIG. 8. Chaotic pattern selection of type 2. The parameters are
=1.7,£=0.22, andr =50. a=1.7,£=0.065, and =50.
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With the exception ofr=1, the curves become steeper
and move to the left for increasing coupling strengths. For
r=1, when increasing the coupling strength beyond the
range where chaotic pattern selection is found, an inverse
bifurcation sequence to the spatially and temporally period 2
zigzag pattern occurs. This was not found for1, where
the lattice seems to freeze nonperiodically, possibly forming
patterns that somewhat fall between globally coupled and
locally coupled maps, before forming selected patterns for
largere.

! | \‘ ! f
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Ratio of sites in the same band

IV. HINTS FOR UNIVERSALITY

Since their introduction, a key motivation for the study of
coupled map lattices has been the prospect of universality. In
order to investigate how universal the phenomenology of the
€ coupled logistic lattice is, the following models were simu-

. : o lated:
FIG. 9. The ratio of sites that, when starting in either the lower

or upper band, is found to be in the same band 100 iterates later.

The average over £Qtime steps is taken after a transient of 10 X, =1- E(xin’lerin“)xin with max (x!,,,)=1,
time steps. The system sizes &te=100 forr=1, N=200 forr

=2,5,10, and\N= 300 forr=50. The nonlinearity isx=1.7. The ()
insets show some representative space-amplitude ploa) évery

second iterate is plotted and (h) every 100th iterate is plotted for Xin+l: 1— f|(xin—1+xin+ l)(Xin)2|- (4)
r=5 ande =0.62. In(c) every 100th iterate is plotted for=5 and 2

e=0.73.

) ) . o Xi _ XI l |+1 5
This ratio of wavelength to system size should be sufficiently n+17= |( ”) K ©
small to exclude frustration as the source for this type of
CPS. i i—1 i+1 i— l |+1

The second type of chaotic pattern selection, depicted in Xnt1= 47 _|(X X0 )X+ X B ©)
Fig. 8, occurs in a narrow band for valuesso§lightly larger
than those that yield the spatiotemporal chaos found for Xin+1: (1— e)xin+ ef1- |(Xin—1+xin+ 1)Xin|]_ (7)

smalle. The transition from spatiotemporal chaos to chaotic
pattern selection appears to be smaatheast as long asis Equationg3)—(7), all turned out to have similar dynamics as
not too big as can be seen in Fig. 9 where the ratio of latticecan be seen in Fig. 10.
sites that are found in the same band at one time step and 100 For comparison, Fig. @) depicts pattern selection as it
iterates later is plotted versus(the patterns are temporally occurs in Eq.(1) with r=1
period 2. While this ratio includes sites that flip back and  Similar dynamics were not only observed for different
forth, after the transients have mostly died out, it provides aypes of couplings but also for local maps with higher pow-
good indication of the temporal stability of the pattern. ers in Eq.(1) (r=1) as is shown in Fig. 11. In order to be
When increasing: from the spatiotemporal region, the able to compare the phenomenology, the nonlinearityas
temporal stability of the pattern slowly increases, i.e., thechosen such that the local map is just before the period-3
time sites remain in the same band increases gradually. Atindow except for(a) where it was chosen to be at about
first sites remain in the same band only for very short timesone-third the distance between the band merging point and
Then they do so for longer times disturbed by frequent demaximum nonlinearity.
fects. As in the type 2 intermittency found in the nearest Figures 10 and 11 clearly show that the pattern dynamics
neighbor diffusively coupled logistic lattice, these defectsas such is neither dependent on the exact from of the em-
can spontaneously arise. Lastly, when the ratio is just reaclployed coupling nor dependent on the power of the local
ing one, regularly spaced chaotic pattern selection can beap. Indeed, it is not even dependent on having a local map
found. This is illustrated in the insets of Fig. 9.(® and(b), at all.
the parameters are identical but the time scales are different. A rough phenomenological phase diagram, applicable to
In (a), where the spatiotemporal pattern can clearly be disall the lattices studied in this paper, is given in Fig. 12. In the
cerned, every second iterate is plotted revealing the shortase of the models without an explicit coupling constant
time dynamics, while in(b), resembling spatiotemporal [Egs.(3)—(7)], the basic pattern sequence as depicted can be
chaos, every 100th iterate is plotted. Ing®tshows chaotic observed when increasing the nonlineafityEqg. (7) & plays
pattern selectiorisome defects remain for these parametersthe role of the nonlinearifly If the model contains a coupling
for a value ofe at which the ratio of sites found in the same constant, its increase will lead to longer wavelengths. Fur-
band is nearly 1. thermore, in all the models investigated, increasing the cou-
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FIG. 10. Pattern selection for Eq®)—(7). (a) Equation(3), «
=1.7. (b) Equation(4), «=1.81. (c) Equation (5), «=1.84. (d)
Equation(6), «=1.65.(e) Equation(7), £e=0.93.(f) Equation(1),
a=17, £=0.5.
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FIG. 11. Selected patterns for various local maps as indicated on

the right hand side of the graphda) f(x)=1-alx|, «
=155 £=05. (b) f(x)=1—ax?, «a=1.74, £=0.6. (0
f(x)=1—ax?x|, @=179, £=06. (d f(x)=1—ax* «
=1.80, £=0.55.(e) f(x)=1—ax®x|, «=1.83, £=0.5.
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FIG. 12. Phenomenological phase diagram for the lattices stud-
ied in this paper. The insets show representative patterns from the
nearest neighbor diffusively coupled logistic latticda) «

=0.50, £=0.5.(b) «=1.30, £=0.5.(c) a=1.45, &=0.5.(d)
a=1.70, £=0.5.(e) «a=1.80, £=0.5. (f) «a=1.70, £=0.8.
(g) «=1.70, £=0.085.(h) «a=1.70, £=0.04.

pling ranger resulted in an increase of the wavelength and in
an increase of the similarity between the wave shapes. The
numerical results, therefore, strongly hint at the existence of
an underlying universal mechanism.

V. THE TENT-COUPLING MAP AS A SIMPLE PARADIGM

In order to provide a simple paradigm for the pattern se-
guence observed in E¢l) and Eqgs.(3)—(7), the following
tent-coupling map was studied

. (04 L . .
Xnr1=1= 5|0 Xl ®

wherei is the spatial indexn the discrete time, and a
parameter. Just as in the case of the diffusively coupled map,
Eq. (8) can straightforwardly be extended to longer coupling
ranges
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FIG. 13. The tent-coupling map of E@8) for several given
values ofx}, *+x"* as indicated in the figure fax=2.0.
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VI. CONCLUSION

r
ik itkyyi
k21 (Xp "X

. o
I —

Xn+1=1 2r ' ©) In conclusion, it was found that a variety of coupled maps
displays identical pattern sequences when increasing the
nonlinearity. It was furthermore found that the patterns scale

As immediately can be seen, in the homogeneous cas?—f\\'hen Increasing the_coupllmg range. In the case of the. d_|ffu-

. - . .~slively coupled logistic lattice, the scaling is linear providing

Eq. (8) reduceg to the _smgle logistic map, Wh'.le fOT a 9IVeN clear numerical evidence for a continuum limit. The two

state of the neighbors it forms the tent map given in Fig. 1%ngings combined provide thus far the strongest evidence

where the slope is determined by the product of the n0n|lnyet of the existence of universality classes in coupled map
earity & and the sum of the neighbors. lattices. The very simple introduced tent-coupling map ap-

As with the other models used in this paper, it is foundpears to be suitable as a paradigm for the pattern sequence in
that the pattern sequence observed for @j.goes from a this class of coupled maps.

uniform state to(supertransientspatiotemporal chaos via

patterns with kinks, frozen random patterns, and pattern se- ACKNOWLEDGMENT
lection. Even traveling waves have been observed dor | am grateful to Kunihiko Kaneko for stimulating feed-
=1.75 andr=2. back and valuable suggestions on the manuscript.
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